Научно-образовательные школы Московского университета

Физики МГУ уменьшили размеры контактов Джозефсона для сверхпроводниковых схем

Фотоника Наука
Сотрудники НОШ МГУ «Фотоника» предложили метод миниатюризации контактов Джозефсона для цифровых сверхпроводниковых схем. Ученым удалось найти способ уменьшить планарные размеры такой структуры до «уровня» полупроводникового 40-нм техпроцесса. Результаты работы демонстрируют перспективы применения сверхпроводниковой технологии в области суперкомпьютеров и опубликованы в журнале Physical Review Applied.

Сверхпроводящие процессоры для квантовой индустрии обеспечивают связь между электроникой, работающей при комнатной температуре, и устройствами, функционирующими при суб-кельвиновых температурах. Такие системы отличаются также выдающейся энергоэффективностью и высокими тактовыми частотами. Эта технология получила огромный толчок к развитию в последнее десятилетие, однако ее развитие сдерживает низкая степень интеграции. Одна из самых сложных проблем в этой области — уменьшение размера джозефсоновского контакта, нелинейного элемента сверхпроводниковых цепей. С физической точки зрения эта гетероструктура — просто «слабая связь» между двумя сверхпроводниками.

«В работе мы рассмотрели различные варианты реализации джозефсоновских контактов в поисках структуры, способной „пережить“ масштабирование до нанометровых размеров для использования в цифровой сверхпроводниковой технологии. Такие контакты должны обладать высокими значениями критического тока, сопротивления в нормальном состояния и высокой воспроизводимостью параметров на изготовленном чипе», — рассказал доцент физического факультета МГУ Николай Кленов.

Сотрудники МГУ вместе с коллегами исследовали наиболее распространенные типы джозефсоновских гетероструктур с точки зрения их масштабируемости и показали, что контакт «сверхпроводник — металл — сверхпроводник» в геометрии «мостик переменной толщины» допускает многообещающую миниатюризацию планарных размеров. Ученые теоретически рассчитали температурные зависимости критического тока и характерного напряжения для различных интерфейсов.

Николай Кленов также добавил, что полученные результаты показали, что контакт с высоким (до 1 милливольта) значением характерного напряжения может быть изготовлен из широко используемой комбинации материалов, таких как Nb и Cu, с использованием хорошо отработанных технологических процессов.